Improving BAS committee performance with a semi-supervised approach
نویسندگان
چکیده
Semi-supervised Learning is a machine learning approach that, by making use of both labeled and unlabeled data for training, can significantly improve learning accuracy. Boosting is a machine learning technique that combines several weak classifiers to improve the overall accuracy. At each iteration, the algorithm changes the weights of the examples and builds an additional classifier. A well known algorithm based on boosting is AdaBoost, which uses an initial uniform distribution. Boosting At Start (BAS) is a boosting framework that generalizes AdaBoost by allowing any initial weight distribution and a cost function. Here, we present a scheme that allows the use of unlabeled data in the BAS framework. We examine the performance of the proposed scheme in some datasets commonly used in semi-supervised approaches. Our empirical findings indicate that BAS can improve the accuracy of the generated classifiers by taking advantage of unlabeled data.
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملEnhancing the Performance of Semi-Supervised Classification Algorithms with Bridging
Traditional supervised classification algorithms require a large number of labelled examples to perform accurately. Semi-supervised classification algorithms attempt to overcome this major limitation by also using unlabelled examples. Unlabelled examples have also been used to improve nearest neighbour text classification in a method called bridging. In this paper, we propose the use of bridgin...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملCombining Committee-Based Semi-supervised and Active Learning and Its Application to Handwritten Digits Recognition
Semi-supervised learning reduces the cost of labeling the training data of a supervised learning algorithm through using unlabeled data together with labeled data to improve the performance. Co-Training is a popular semi-supervised learning algorithm, that requires multiple redundant and independent sets of features (views). In many real-world application domains, this requirement can not be sa...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009